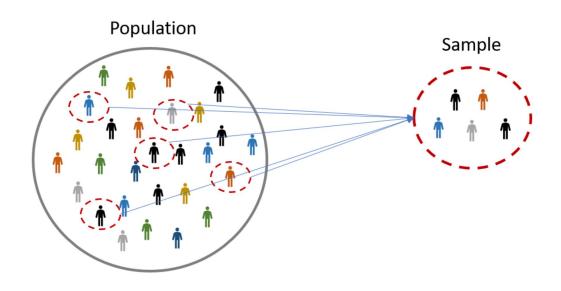


Sampling Distributions

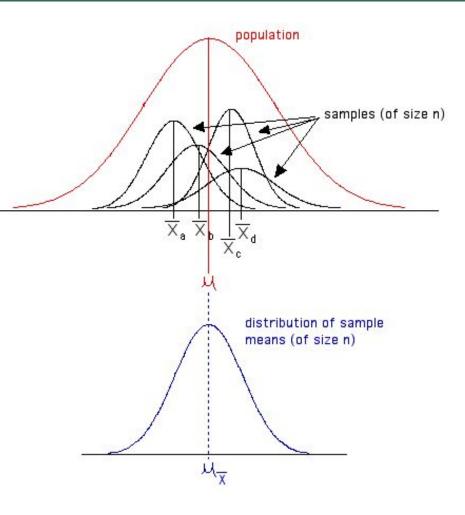
Samples and population

- The location of a score in a sample or in a population can be represented with a z-score
- Researchers typically want to study entire samples rather than single scores
 - Sample provides estimate of the population
 - Tests involve transforming sample mean to a z-score



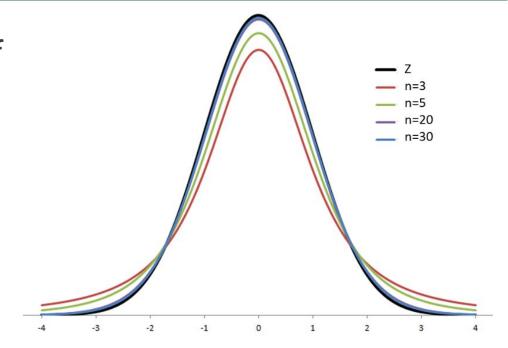
Distribution of sample means

- Samples differ from each other
 - Given a random sample it is unlikely that sample means would always be the same
- The distribution of sample means = the collection of sample means for all the possible random samples of a particular size (n) that can be obtained from a population

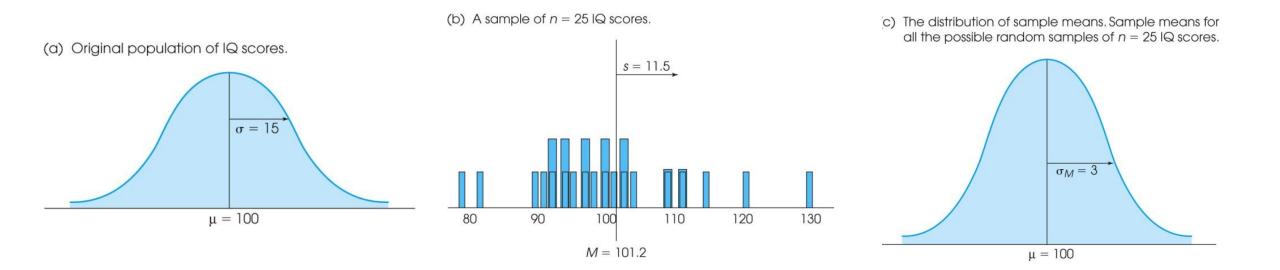


Sampling distribution

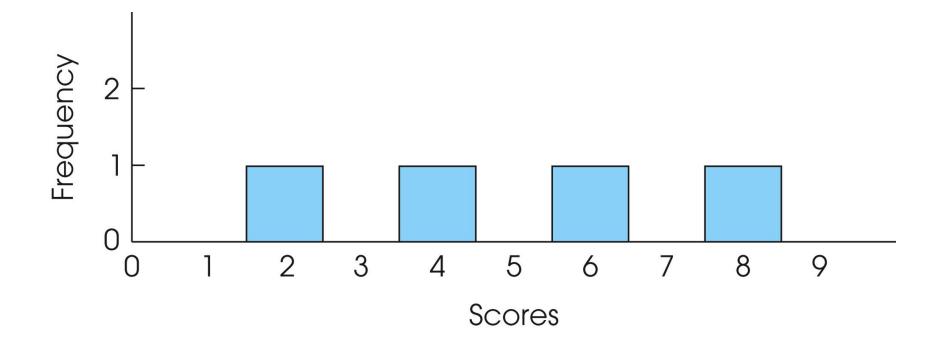
- Distribution of Sample Means is a distribution of sample means obtained from a population
 - Special kind of population -> a sampling distribution



Distribution of scores vs. Sample means

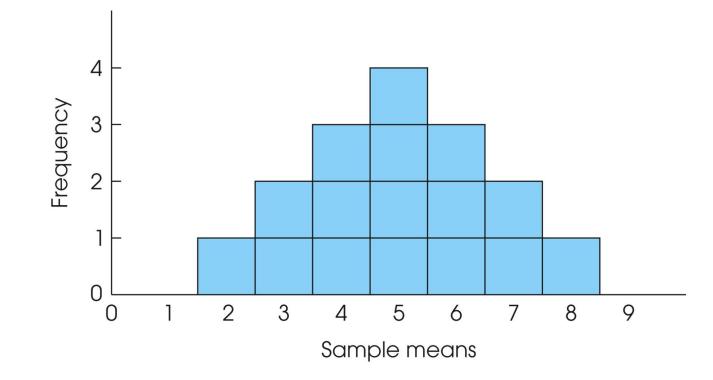


Population frequency distribution histogram



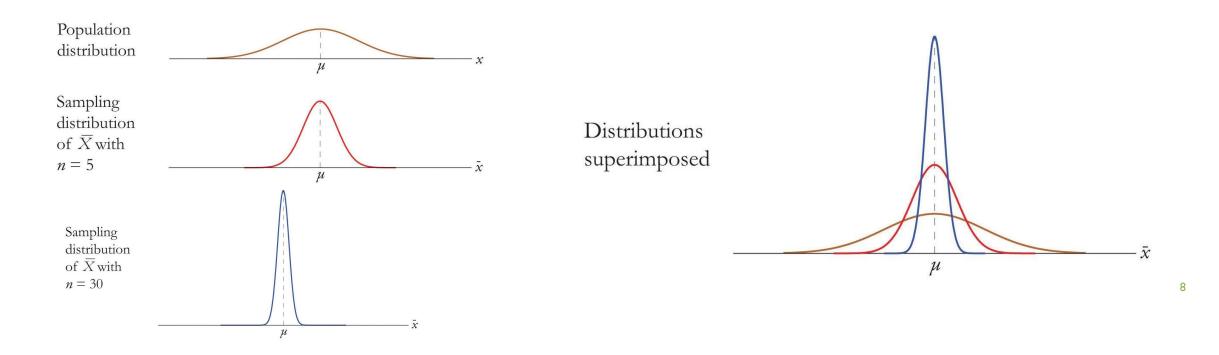
Distribution of sample means (n = 2)

SAMPLE	SCORES		SAMPLE MEAN
	FIRST	SECOND	(<i>M</i>)
1	2	2	2
2	2	4	3
3	2	6	4
4	2	8	5
5	4	2	3
6	4	4	4
7	4	6	5
8	4	8	6
9	6	2	4
10	6	4	5
11	6	6	6
12	6	8	7
13	8	2	5
14	8	4	6
15	8	6	- 7
16	8	8	8



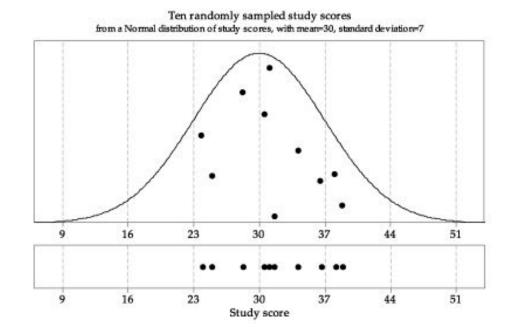
Important characteristics of distributions of sample means

- The sample means pile up around the population mean
- The distribution of sample means is approximately normal in shape

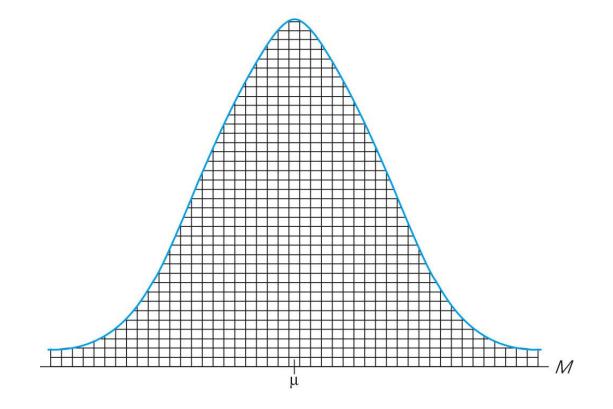


Shape of the distribution of sample means

- The distribution of sample means is almost perfectly normal in either of two conditions
 - 1. The population from which the samples are selected is a normal distribution or
 - 2. The number of scores (*n*) in each sample is relatively large—at least 30

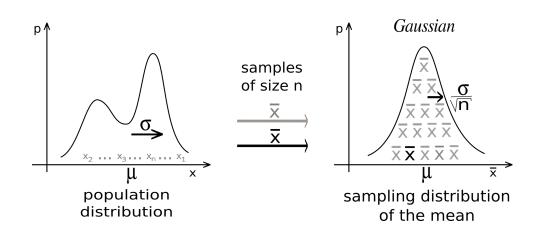


Example of typical distribution of sample means

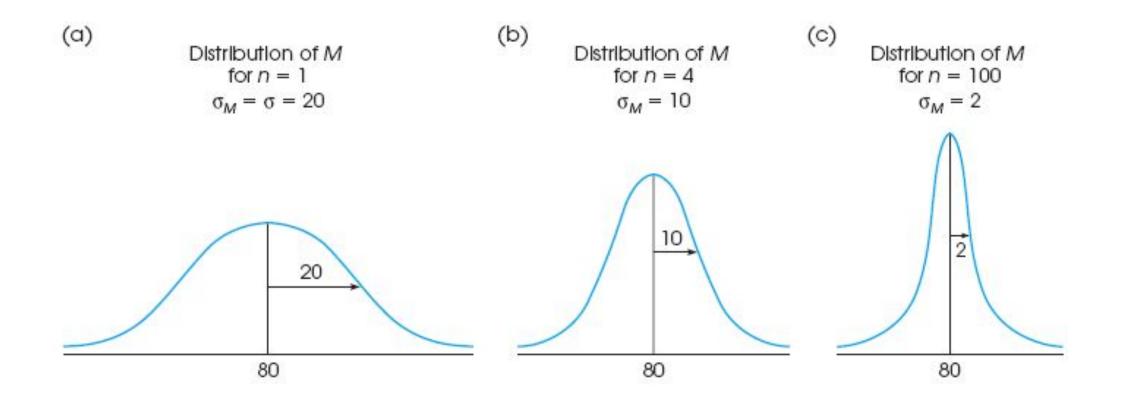


Central Limit Theorem

- Applies to any population with mean μ and standard deviation σ
- Distribution of sample means approaches a normal distribution as *n* approaches infinity
- Distribution of sample means for samples of size *n* will have a mean of μ_M
- Distribution of sample means for samples of size *n* will have a standard deviation = $/_{\gamma}$



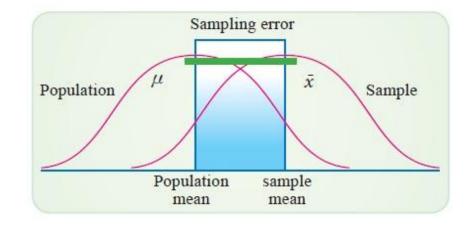
Distribution of sample means when n = 1, 4, and 100



Sampling error

Because samples differ from one another, errors can occur

- Sampling error is the discrepancy between a sample statistic and its corresponding population parameter
 - Amount of sampling error varies across samples
 - The variability of sampling error is measured by the standard error of the mean



Expected value of M

- Mean of the distribution of sample means is μ_M and has a value equal to the mean of the population of scores, μ
 - expected value of M
- *M* is an <u>unbiased statistic</u> because μ_M , the expected value of the distribution of sample means is the value of the population mean, μ

Standard error of M

- Standard deviation = Variability of a distribution of *scores*
- <u>Standard error of M</u> (σ_{M}) = Variability of a distribution of sample <u>means</u>
 - Measured by the standard deviation of the sample means
 - Provides a measure of how much distance is expected on average between M and μ
 - Standard error = σ / \sqrt{n}

Standard error magnitude

Law of large numbers: the larger the sample size, the more probable it is that the sample mean will be close to the population mean

• N
$$\uparrow$$
 , M = μ , because SE \downarrow

Population variance: The smaller the variance in the population, the more probable it is that the sample mean will be close to the population mean

•
$$\sigma$$
 , then M = μ

$$SE = \frac{\sigma}{\sqrt{n}}$$

Example – Calculating SE

A population has a standard deviation of σ = 20.

A) If a single score is selected from this population, how close, on average, would you expect this score to be to the population mean?

B) If a sample of n = 4 scores is selected from the population, how close, on average, would you expect the sample mean to be the population mean?

 $SE = \frac{1}{\sqrt{n}}$

Example – Calculating SEANSWERS

A population has a standard deviation of σ = 20.

A) If a single score is selected from this population, how close, on average, would you expect this score to be to the population mean?

B) If a sample of n = 4 scores is selected from the population, how close, on average, would you expect the sample mean to be the population mean?

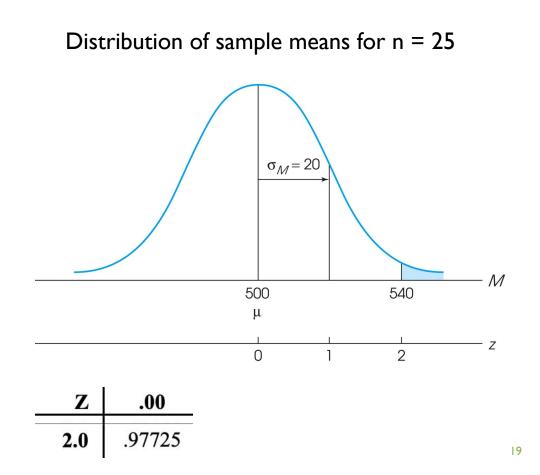
A) The standard deviation, $\sigma =$ 20, measures the standard distance between a score and the mean

SE =

B)
$$SE = \frac{20}{\sqrt{4}} = \frac{20}{2} = 10$$
 points

Probability and the distribution of sample means

- Primary use of the distribution of sample means is to find the probability associated with any particular sample (sample mean)
- Proportions of the normal curve are used to represent probabilities
- A z-score for the sample mean is computed



A z-score for sample means

- Sign tells whether the location is above (+) or below (-) the mean
- Number tells the distance between the location and the mean in standard deviation (standard error) units

z-formula:
$$z = \frac{M - \mu}{\sigma_M}$$

Example – Calculating z-scores

A population has $\mu = 80$ and $\sigma = 12$. Find the z-score corresponding to each of the sample means:

A) M = 84 for a sample of n = 9 scores
Formulas:
$$SE = \frac{\sigma}{T} = \frac{M - \mu}{T}$$

B)
$$M = 74$$
 for a sample of $n = 16$ scores

$$SE = \frac{\sigma}{\sqrt{n}} \qquad z = \frac{M - \mu}{\sigma_M}$$

Example – Calculating z-scores ANSWERS

A population has $\mu = 80$ and $\sigma = 12$. Find the z-score corresponding to each of the sample means:

A) M = 84 for a sample of n = 9 scores

$$SE = \frac{12}{\sqrt{9}} = \frac{12}{3} = 4$$
; $z = \frac{84-80}{4} = \frac{4}{4} = 1.00$
B) M = 74 for a sample of n = 16 scores

$$SE = \frac{12}{\sqrt{16}} = \frac{12}{4} = 3$$
; $z = \frac{74 - 80}{3} = \frac{-6}{3} = -2.00$

Learning Check I

- 1. A population has $\mu = 60$ with $\sigma = 5$; the distribution of sample means for samples of size n = 4 selected from this population would have an expected value of _____
 - A) 5
 - B) 60
 - C) 30
 - D) **I5**

Learning Check I - Answer

1. A population has $\mu = 60$ with $\sigma = 5$; the distribution of sample means for samples of size n = 4 selected from this population would have an expected value of _____

 \checkmark

- A) 5
- **B)** 60
- C) 30
- D) **I5**

Learning Check 2

2. Decide if each of the following statements is True or False.

A) The shape of a distribution of sample means is always normalB) As sample size increases, the value of the standard error decreases

Learning Check 2 - Answer

2. Decide if each of the following statements is True or False.

A) False - The shape is normal *only* if the population is normal or $n \ge 30$ B) True - Sample size is in the denominator of the equation so as *n* grows larger, standard error decreases

In the literature

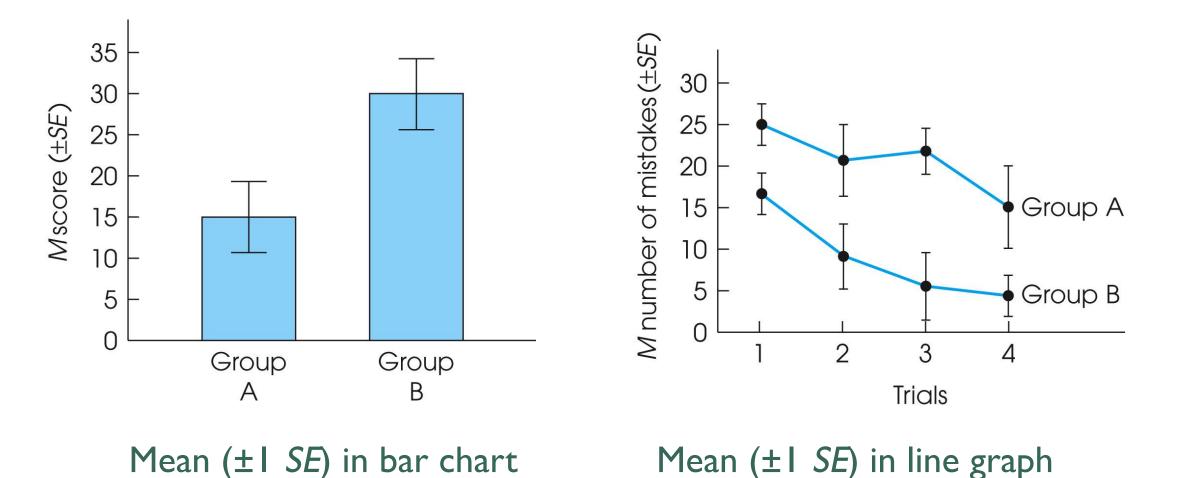
Journals vary in how they refer to the standard error but frequently use:

SE

SEM

- Often reported in a table along with n and M for the different groups in the experiment
- May also be added to a graph

SE in the literature



Looking ahead to inferential statistics

- Inferential statistics use sample data to draw general conclusions about populations
 - Sample information is not a perfectly accurate reflection of its population (sampling error)
 - Differences between sample and population introduce uncertainty into inferential processes
- Statistical techniques use probabilities to draw inferences from sample data

Learning Check 3

1. A random sample of n = 16 scores is obtained from a population with $\mu = 50$ and $\sigma = 16$. If the sample mean is M = 58, the z-score corresponding to the sample mean is ____?

A)
$$z = 1.00$$

B) $z = 2.00$

C) *z* = 4.00

D) Cannot determine

Learning Check 3 - Answer

1. A random sample of n = 16 scores is obtained from a population with $\mu = 50$ and $\sigma = 16$. If the sample mean is M = 58, the z-score corresponding to the sample mean is ____?

D) Cannot determine

Learning Check 4

2. Decide if each of the following statements is True or False.

A) A sample mean with z = 3.00 is a fairly typical, representative sample B) The mean of the sample is always equal to the population mean

Learning Check 4 - Answer

2. Decide if each of the following statements is True or False.

A) False - A z-score of 3.00 is an extreme, or unlikely, z-scoreB) False - Individual samples will vary from the population mean

Learning Objectives

By the end of this lecture, you should be able to:

- Define distribution of sampling means
- Describe distribution by shape, expected value, and standard error
- Describe location of sample mean M by z-score

