

Describing data using tables and graphs

Descriptive statistics

- Concerned with techniques that are used to describe, organize, or summarize data
- We do this with graphs!

Levels of
 measurement

Type of scale influence operations

- Nominal and Ordinal - you cannot use addition, subtraction, multiplication, division, or ratios
- Nominal data are qualitative
- Ordinal data tell us about magnitude
- Interval - multiplication, division
- Ratio - you can use all the operations!

Types of Data

©̄ Quantitative

Data that can be measured with numbers, such as duration or speed

Whole numbers that can't be broken down, such as a number of items

li Continuous

Numbers that can be broken down, such as height or weight

w Qualitative

Non-numerical data that is categorical, such as yes/no responses or eye colour

Data used for naming variables, such as hair colour

Data used to describe the order of values, such as 1 = happy, 2 = neutral, $3=$ unhappy

Numbers with known differences between variables, such as time

Numbers that have measurable intervals where difference can be determined, such as height or weight

Likert Scales - the exception

- In order to calculate summary statistics on data, we need them to be on an interval or ratio scale
- We treat Likert scales (any scale that measures attitudes/ratings using labels rather than numbers) as interval

	$\begin{gathered} \text { Nogat } \\ \text { onfert } \end{gathered}$			Motemem			mamb
	\bigcirc	-	-	\bigcirc	-	-	\bigcirc
	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc
	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-	-	-	-	\bigcirc	-	-
	-	-	-	-	-	-	\bigcirc
	-	-	-	\bigcirc	-	-	-
	-	-	-	-	-	-	-

Graphing
data

Types of data influence graphs

- Quantitative data (interval, ratio, continuous or discrete)
- Frequency tables
- Stem and leaf plots
- Histograms
- Box plots
- Qualitative data (nominal, ordinal, discrete variables)
- Pie charts
- Bar graphs
- Line graphs

Types of data influence graphs

Pie Chart	Bar Chart	Histogram/Density Plot	Box Plot
Categorical	Categorical	Numerical	Numerical

Frequency distributions

- Ordered list of all values of a variable and their frequencies
- Logical order (usually descending)

Frequency distributions (continued)

■ Can be tables or graphs, but contains two elements

- $f=$ Frequency
- \# of times a value of variable

Frequency Distribution Table for Grouped Data Class Limits \mid Frequency 25-27
22-24
19-21
16-18
13-15 Total 3

40

18131821 20182317 20222423 28281716 20282521 2入192417 20221828 17152018 19182623 20271519 occurs

■ $\Sigma f=n$

Frequency example I

The following set of $N=20$ scores was obtained from a 10 -point statistics quiz. We will organize these scores by constructing a frequency distribution table.

The scores are:
8, 9, 8, 7, $10,9,6,4,9,8$
7, 8, IO, 9, 8, 6, 9, 7, 8, 8

Frequency example I

Scores:
8, 9, 8, 7, $10,9,6,4,9,8$
$7,8,10,9,8,6,9,7,8,8$

Highest score is $\mathbf{X}=\mathbf{1 0}$	10	2
	9	5
	8	7
	7	3
Lowest score is $\mathbf{X}=\mathbf{4}$	6	2
	5	0

Notice that all the possible values between IO and 4 were used!

Obtaining ΣX from frequency distribution

$$
\begin{aligned}
& \Sigma f=n=20 \\
& \text { I) } \Sigma X= \\
& \quad \Sigma X=10+10+9+9+9+9+9+8+8 \\
& +\ldots \\
& \Sigma X=158 \\
& \text { 2) } \Sigma X^{2}=1288
\end{aligned}
$$

Example I

X	f
10	2
9	5
8	7
7	3
6	2
5	0
4	1

Learning check I

I) Place the following scores in a frequency distribution table.

2, 3, I, 2, 5, 4, 5, 5, I, 4, 2, 2

Learning check I - Answer

I) Place the following scores in a frequency distribution table. 2, 3, I, 2, 5, 4, 5, 5, I, 4, 2, 2

X	f
5	3
4	2
3	1
2	4
1	2

More on graphing quantitative data

- Interval and ratio data can be graphe in the following plots
- Stem and leaf plots
- Histograms

- Box plots
- Bar charts

Stem-and-leaf plots

- Groups data with the same stem
- All possible stems are listed in a column
- The leaf for each quantitative measurement is placed in the stem row

■ Leaves with the same stem value are listed in increasing order horizontally

Stem-and-leaf Example I

Number of touchdown passes thrown by each of the 3I teams in the National Football League in the 2000 season:
$37,33,33,32,29,28,28,23,22,22,22,2 I, 2 I, 2 I, 20,20,19,19,18, I 8,18,18,16, I 5$, I4, I4, I4, I2, I2, 9, 6

```
3|2337
2|00|।|22233889
1|2244456888899
0|68
```

```
3|7
3|233
2|889
2|00|||22233
1|56888899
1|22444
0168
```


Histograms

- List of variables and their frequencies
- X-axis - class intervals of variables (same width)
- Y-axis - vertical bar of frequencies (or relative frequencies)

Histogram Example I

Scores
Histogram

X	f
6	1
5	2
4	2
3	4
2	2
1	1

Histogram Example 2

Scores

X	f
$12-13$	4
$10-11$	5
$8-9$	3
$6-7$	3
$4-5$	2

Histogram

Box plots

- Five-number summary of a set of data: the minimum, first quartile, median, third quartile, and maximum
- Minimum - the lowest score, excluding outliers

■ Lower Quartile - 25% of scores fall below the lower quartile value

- Median - mid-point of the data; shown by the line that divides the box into two parts

Box plots (continued)

- Upper Quartile-75\% of the scores fall below the upper quartile value

■ Maximum - the highest score, excluding outliers

- Whiskers - scores outside the middle 50\% (i.e. the lower 25% of scores and the upper 25\% of scores)
- The Interquartile Range (IQR) -middle 50\% of scores (i.e., the range between the 25 th and 75th percentile)

Boxplot summary

Box plot Example I

Find the quartiles of this data set:
Rank of data points

Rank Value
6, 47, 49, I5, 43, 4I, 7, 39, 43, 4I, 36

- Step I:Arrange data set in increasing order
- Step 2: Find the rank of the median split

$$
(n+I) \div 2=(I I+I) \div 2=6
$$

Box plot Example I

- Step 3: Split the lower half of the data in two again

Rank of data points to find the lower quartile. Do the same to the upper half

$$
(n+1) \div 2=(5+1) / 2=6
$$

- Step 4: Calculate IQR

$$
\text { Q3-QI }=43-15=28
$$

Rank	Value	
1	6	
2	7	
3	15	Q I
4	36	
5	39	
6	41	Median
7	41	
8	43	
9	43	Q3
10	47	
11	49	

Creating the box plot

Rank of
data points
Rank Value

You can use IQR to identify outliers!

Check for low outliers QI - (I.5*IQR) = $15-(1.5 * 28)=$
$15-42=-27$

Check for high outliers
Q3 + (1.5*IQR) $=$
$43+(1.5 * 28)=$
$43+42=85$

Learning Check 2

1) Use a histogram to draw the following set of data containing the number of times a group of studnn+n....nthand tha Snam.. Datmen series.

Histogram of h

I, 4, 3, 5, 2, 7, 4, 6, 2, 3

Generally, you want to use whole numbers on the y-axis (but I had trouble doing that in my stats program

Learning Check 2 - Answer

Set of data: I, 4, 3, 5, 2, 7, 4, 6, 2, 3

Histogram of h

Generally, you want to use whole numbers on the y-axis (but I had trouble doing that in my stats program)

Learning Check 3

2) Use a stem-and-leaf plot to organize the following scores:

86, II4, 94, I07, 96, I00, 98, I I 8,107
I 32, I06, I27, I24, I08, I I2, I I9, I25, I I 5

$$
\begin{array}{l|l}
8 & \mid 6 \\
9 & \mid 468 \\
10 \mid 06778 \\
11 & \mid 24589 \\
12 & \mid 457 \\
13 & \mid 2
\end{array}
$$

Reorder:
86, 94, 96, 98, $100,106,107,107,108$
II2, II4, II5, II8, II9, I24, I25, I27, I 32

Learning Check 3 - Answer

Step I: reorder data
86, 94, 96, 98, I00, 106, I07, I07, 108
II2, II4, II5, II8, II9, I24, I25, I27, I 32

Step 2: Create stem-and-leaf plot

```
8 |
9 |468
    10|06778
I| | 24589
12 | 457
| | 2
```


Graphs for nominal or ordinal data

- Values of a qualitative variables can only be classified into categories (classes)
- Graphical methods for describing qualitative data include
- Pie charts
- Bar graphs
- Line graphs

Bar graphs

- A bar graph is essentially the same as a histogram, except there are spaces between adjacent bars
- Scale consists of separate, distinct categories
- X-axis - categories or classes
- Y-axis - class frequency, class relative frequency, or class percentage

Bar Graph Example I

Distribution of personality types in a sample of college students

Data	
Personality type	f
A	10
B	5
C	20

Pie charts

- Uses relative frequency to depict data as slice of pie
- Proportional to responses in each category

Pie Chart

Personality type

Line graphs

- Like a bar graph with dots at the top, and dots are connected by lines
- Best for representing changes in time

Chart 1: Number of work stoppages, 2001-2020

Note. BLS issued a data correction from 2018 to 2020 - one work stoppage was not included.

Shapes of distributions

Remember central tendency?

- Central tendency describes center of distribution
- Mean, median, mode

Central tendency and the shape of the distribution

- Symmetrical distributions
- Mean and median have same value
- If exactly one mode, it has same value as the mean and the median
- Distribution may have more than one mode, or no mode at all

The Normal Distribution

- Bell-shaped
- One mode
- Symmetric
- Many naturally-occurring variables (like height) are approximately normally distributed

Uniform distributions

- Every outcome is equally likely
- Examples of discrete uniform distributions
- Probability of hitting heads or tails
- Probability of landing on one side of a die
- Examples of continuous uniform distributions
- Perfect random number generators

Histogram of y

Bimodal distributions

- Bimodal (two peaks) or multi-modal
- Two most frequently occurring values
- May indicate relevant subgroups

Central tendency in skewed distributions

- Mean, influenced by extreme scores, is found far toward the long tail (positive or negative)
- Median is found toward the long tail, but not as far as the mean
- Mode is found near the short tail
- Positively skewed
- If Mean - Median > 0
- Extreme observations in right tail
- Negatively skewed
- If Mean - Median < 0
- Extreme observations in left tail

(b) Negative Skew

Skewed distributions

Positive skew / right-tailed

Negative skew / left-tailed

Summary of distributions

Learning objectives

By the end of this lecture, you should be able to:

- Identify methods of graphing qualitative and quantitative data
- Describe shapes of data

