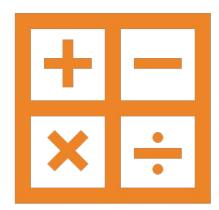


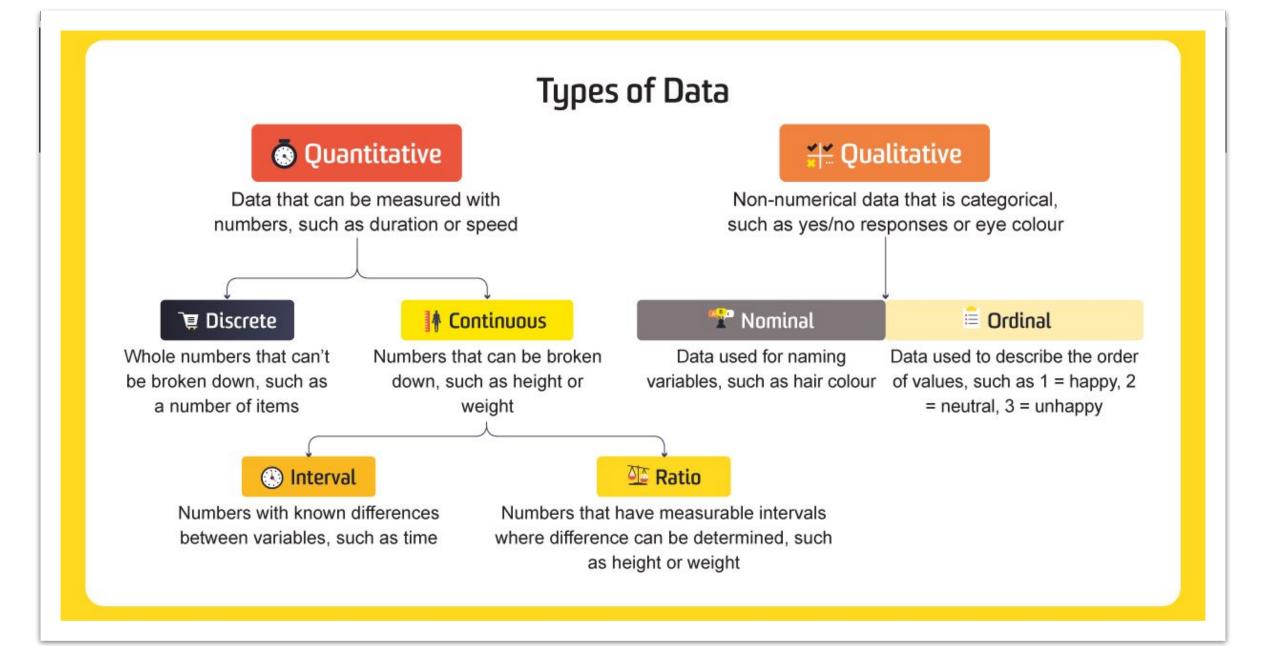
Describing data using tables and graphs

Descriptive statistics

Concerned with techniques that are used to describe, organize, or summarize data

We do this with graphs!




Levels of measurement

Type of scale influence operations

- Nominal and Ordinal you cannot use addition, subtraction, multiplication, division, or ratios
 - Nominal data are qualitative
 - Ordinal data tell us about magnitude
- Interval multiplication, division

Ratio – you can use all the operations!

Likert Scales – the exception

In order to calculate summary statistics on data, we need them to be on an interval or ratio scale

 We treat Likert scales (any scale that measures attitudes/ratings using labels rather than numbers) as interval

	Not at all offensive			Moderately offensive			Highly offensive
Paying someone else to teach your child social and cultural values	0	0	0	0	\bigcirc	\bigcirc	0
Paying someone else for sex	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
Paying someone else to love your friend	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
Paying someone to help you recover from a personal loss	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
Paying someone else to take care of your sick family member	0	0	\bigcirc	0	0	\bigcirc	\bigcirc
Paying someone else to breastfeed your child	0	0	\bigcirc	0	\bigcirc	0	0
Paying someone to have a baby whom the buyer subsequently raises	0	0	0	0	0	0	0

Graphing data

Types of data influence graphs

- Quantitative data (interval, ratio, continuous or discrete)
 - Frequency tables
 - Stem and leaf plots
 - Histograms
 - Box plots

- Qualitative data (nominal, ordinal, discrete variables)
 - Pie charts
 - Bar graphs
 - Line graphs

Types of data influence graphs

Pie Chart	Bar Chart	Histogram/Density Plot	Box Plot
Categorical	Categorical	Numerical	Numerical
	$\uparrow \uparrow \uparrow$		

Frequency distributions

Ordered list of all values of a variable and their	Age	Tally Marks	Number of people
frequencies	5	[N]	5
n equencies	17		4
Logical order (usually descending)	23		3
	30		3
	39		1
Helps calculate range, most frequent value, at first gland	40		3
	48		3
	51	11	2
Calculate proportions and percentages	62		3
			3
			30

Frequency distributions (continued)

Can be tables or graphs, but contains two elements

- f = Frequency
 - # of times a value of variable occurs

 $\sum f = n$

Frequency Distribution Table				
for Grouped Data				
Class Limits Frequency				
5	28 28 17 16			
7	20 20 25 21			
14	21 19 24 17			
11	20 22 18 28			
3	17 18 28 18			
40	19 18 26 28 20 27 15 19			
	ped Data Frequency 5 7 14 11 3			

Frequency example I

The following set of N = 20 scores was obtained from a 10-point statistics quiz. We will organize these scores by constructing a frequency distribution table.

The scores are: 8, 9, 8, 7, 10, 9, 6, 4, 9, 8 7, 8, 10, 9, 8, 6, 9, 7, 8, 8

Frequency example 1

Scores:		Х	f
8, 9, 8, 7, 10, 9, 6, 4, 9, 8	Highest score is X = 10	10	2
		9	5
7, 8, 10, 9, 8, 6, 9, 7, 8, 8		8	7
		7	3
		6	2
		5	0
	Lowest score is X = 4	4	1

Notice that all the possible values between 10 and 4 were used!

Obtaining ΣX from frequency distribution

 $\Sigma f = n = 20$

I)
$$\Sigma X =$$

 $\Sigma X = 10 + 10 + 9 + 9 + 9 + 9 + 9 + 8 + 8 + 8 + ...$
 $\Sigma X = 158$

2) $\Sigma X^2 = 1288$

Example I

X	f
10	2
9	2 5
8	7
7	3
6	2
5	0
4	1

Learning check I

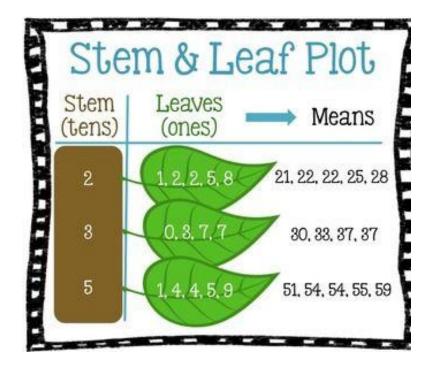
Place the following scores in a frequency distribution table.
 3, 1, 2, 5, 4, 5, 5, 1, 4, 2, 2

Learning check I - Answer


Place the following scores in a frequency distribution table. 3, 1, 2, 5, 4, 5, 5, 1, 4, 2, 2

 \checkmark

X	f
5	3
4 3	2
3	1
2	4
1	2


More on graphing quantitative data

- Interval and ratio data can be graphe in the following plots
 - Stem and leaf plots
 - Histograms
 - Box plots
 - Bar charts

Stem-and-leaf plots

- Groups data with the same stem
 - All possible stems are listed in a column
 - The leaf for each quantitative measurement is placed in the stem row
 - Leaves with the same stem value are listed in increasing order horizontally

Stem-and-leaf Example I

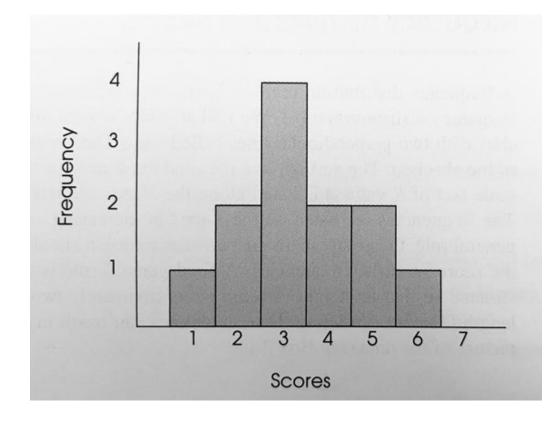
Number of touchdown passes thrown by each of the 31 teams in the National Football League in the 2000 season:

37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 16, 15, 14, 14, 12, 12, 9, 6

		3 /
		3 2 3 3
3 2 3 3 7		2 8 8 9
2 0 0 1 1 2 2 2 3 3 8 8 9		2 0 0 1 1 2 2 2 3 3
1 2 2 4 4 4 5 6 8 8 8 8 9 9	OR	I 5 6 8 8 8 8 9 9
0 6 8		I 2 2 4 4 4
		0 6 8

Histograms

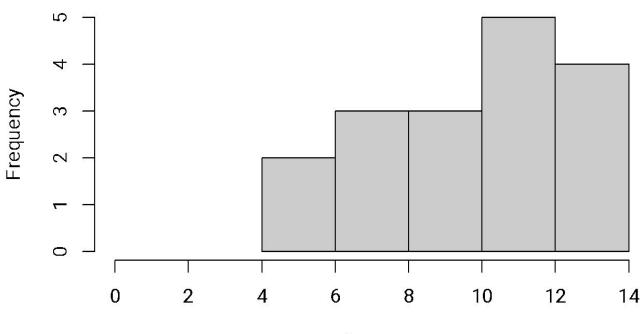
List of variables and their frequencies


- X-axis class intervals of variables (same width)
- Y-axis vertical bar of frequencies (or relative frequencies)

Histogram Example 1

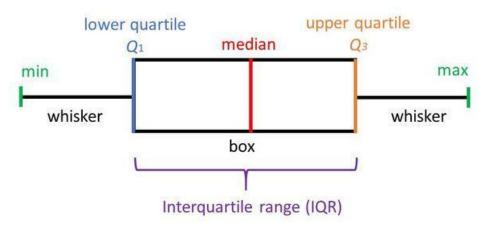
Scores

X	f
6	1
5	2
4	2
3	4
2	2
1	1


Histogram

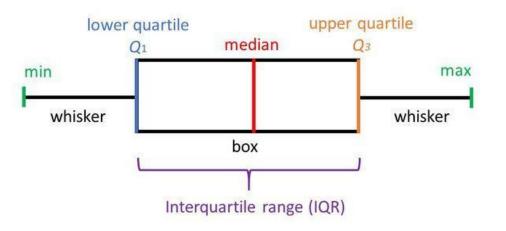
Histogram Example 2

X	f
12-13	4
10-11	5
8-9	3
6-7	3
4-5	2

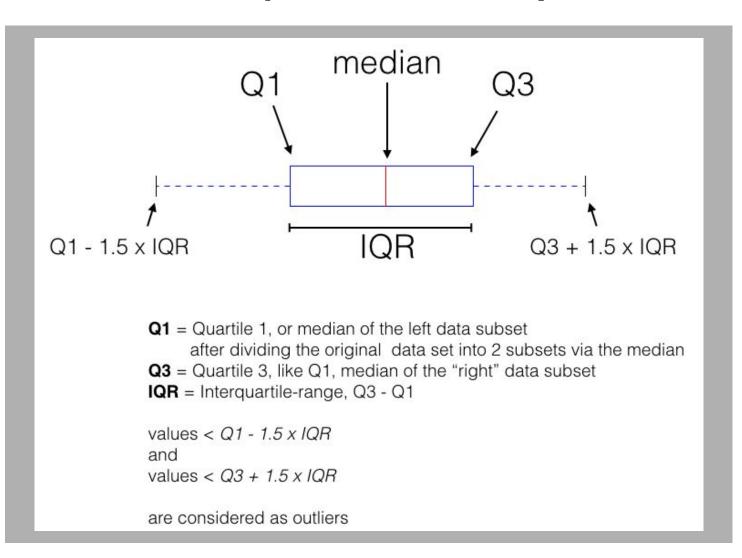


Histogram

Scores


Box plots

- Five-number summary of a set of data: the minimum, first quartile, median, third quartile, and maximum
 - Minimum the lowest score, excluding outliers
 - Lower Quartile 25% of scores fall below the lower quartile value
 - Median mid-point of the data; shown by the line that divides the box into two parts

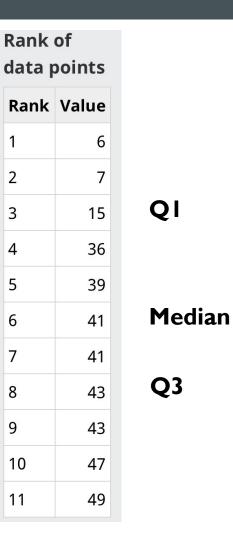


Box plots (continued)

- Upper Quartile 75% of the scores fall below the upper quartile value
- Maximum the highest score, excluding outliers
- Whiskers scores outside the middle 50% (i.e. the lower 25% of scores and the upper 25% of scores)
- The Interquartile Range (IQR) –middle 50% of scores (i.e., the range between the 25th and 75th percentile)

Boxplot summary

Box plot Example 1



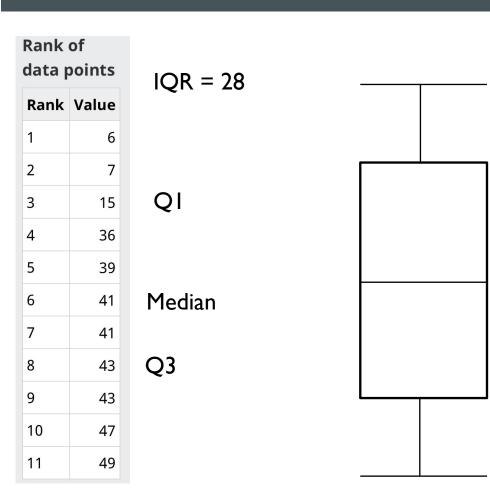
Find the quartiles of this data set: 6, 47, 49, 15, 43, 41, 7, 39, 43, 41, 36

Step I:Arrange data set in increasing order

Step 2: Find the rank of the median split

 $(n + 1) \div 2 = (11 + 1) \div 2 = 6$

Box plot Example 1


Step 3: Split the lower half of the data in two again to find the lower quartile. Do the same to the upper half

$$(n + I) \div 2 = (5+I)/2 = 6$$

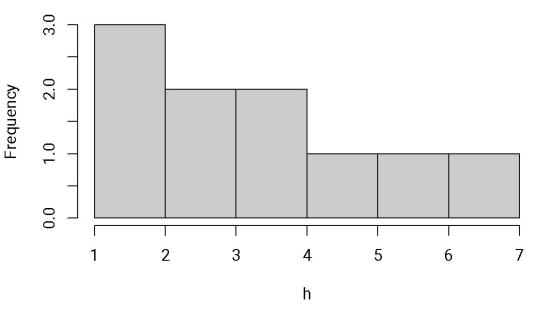
Step 4: Calculate IQR Q3-Q1 = 43-15 = 28

Rank data p		
Rank	Value	
1	6	
2	7	
3	15	QI
4	36	
5	39	
6	41	Median
7	41	
8	43	
9	43	Q3
10	47	
11	49	

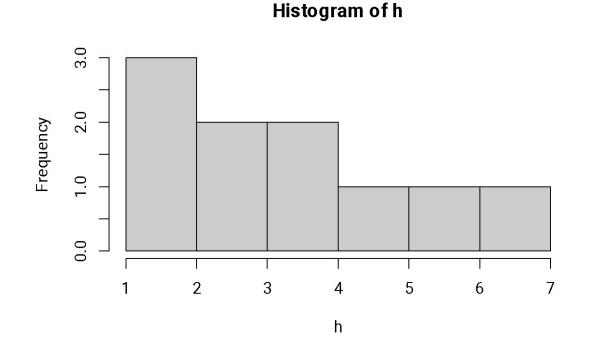
Creating the box plot

You can use IQR to identify outliers!

Check for low outliers QI - (1.5*IQR) = 15 - (1.5*28) =15 - 42 = -27


Check for high outliers Q3 + (1.5*IQR) = 43 + (1.5*28) = 43 + 42 = 85

Learning Check 2


 Use a histogram to draw the following set of data containing the number of times a group of students watched the Harmy Potter series.

Generally, you want to use whole numbers on the y-axis (but I had trouble doing that in my stats program

Learning Check 2 - Answer

Set of data: 1, 4, 3, 5, 2, 7, 4, 6, 2, 3

Generally, you want to use whole numbers on the y-axis (but I had trouble doing that in my stats program)

Learning Check 3

2) Use a stem-and-leaf plot to organize the following scores:

86, 114, 94, 107, 96, 100, 98, 118, 107 132, 106, 127, 124, 108, 112, 119, 125, 115

Reorder:

86, 94, 96, 98, 100, 106, 107, 107, 108 112, 114, 115, 118, 119, 124, 125, 127, 132

Learning Check 3 - Answer

Step 1: reorder data
86, 94, 96, 98, 100, 106, 107, 107, 108
112, 114, 115, 118, 119, 124, 125, 127, 132

Step 2: Create stem-and-leaf plot

Graphs for nominal or ordinal data

 Values of a qualitative variables can only be classified into categories (classes)

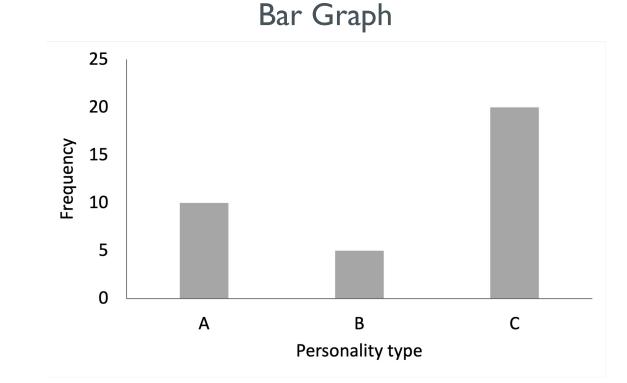
- Graphical methods for describing qualitative data include
 - Pie charts
 - Bar graphs
 - Line graphs

Bar graphs

- A bar graph is essentially the same as a histogram, except there are spaces between adjacent bars
 - Scale consists of separate, distinct categories

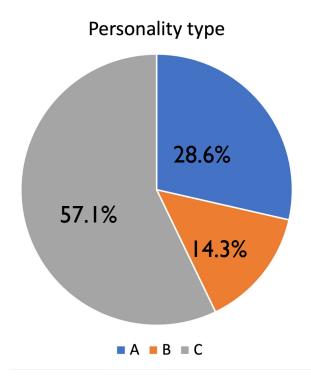
X-axis - categories or classes

 Y-axis - class frequency, class relative frequency, or class percentage


Bar Graph Example I

Distribution of personality types in a sample of college students

Personality type	f
А	10
В	5
С	20


Pie charts

- Uses relative frequency to depict data as slice of pie
- Proportional to responses in each category
- Good for small number of categories

Personality type	f	Relative frequency
А	10	10/35 = 28.6 %
В	5	5/35 = 14.3 %
С	20	20/35 = 57.1%

Data

Line graphs

Like a bar graph with dots at the top, and dots are connected by lines
Best for representing changes in time

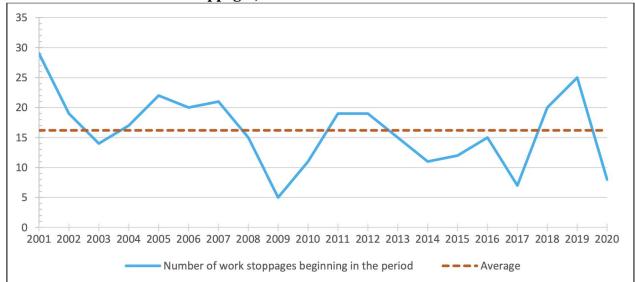
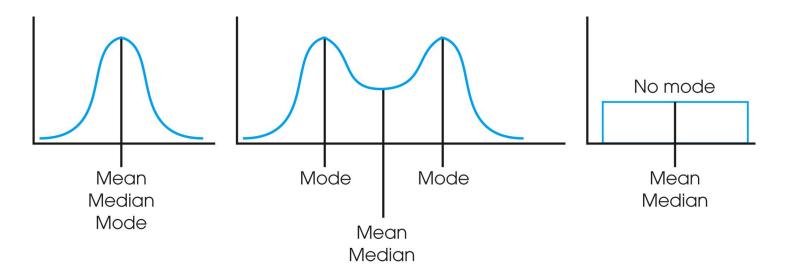


Chart 1: Number of work stoppages, 2001-2020

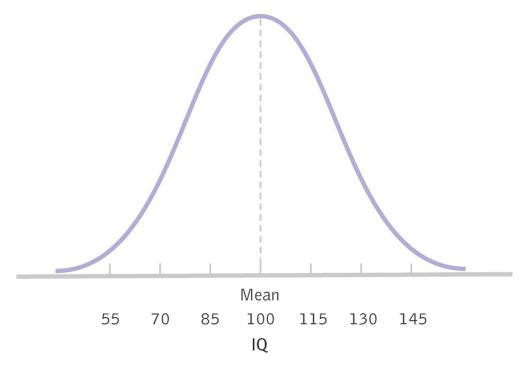
Note. BLS issued a data correction from 2018 to 2020 – one work stoppage was not included.

Shapes of distributions


Remember central tendency?

Central tendency describes center of distribution

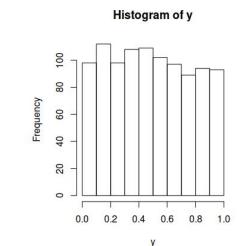
Mean, median, mode

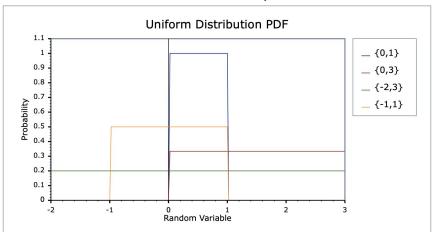

Central tendency and the shape of the distribution

- Symmetrical distributions
 - Mean and median have same value
 - If exactly one mode, it has same value as the mean and the median
 - Distribution may have more than one mode, or no mode at all

The Normal Distribution

- Bell-shaped
 - One mode
 - Symmetric
- Many naturally-occurring variables (like height) are approximately normally distributed

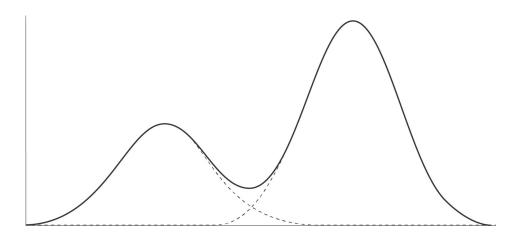



Uniform distributions

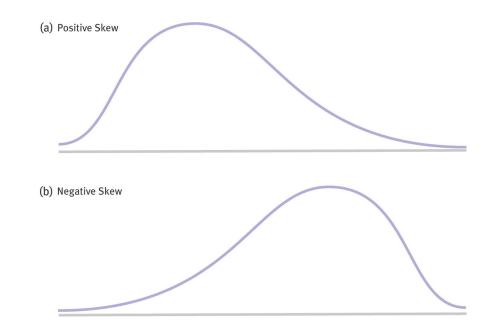
Every outcome is equally likely

- Examples of discrete uniform distributions
 - Probability of hitting heads or tails
 - Probability of landing on one side of a die

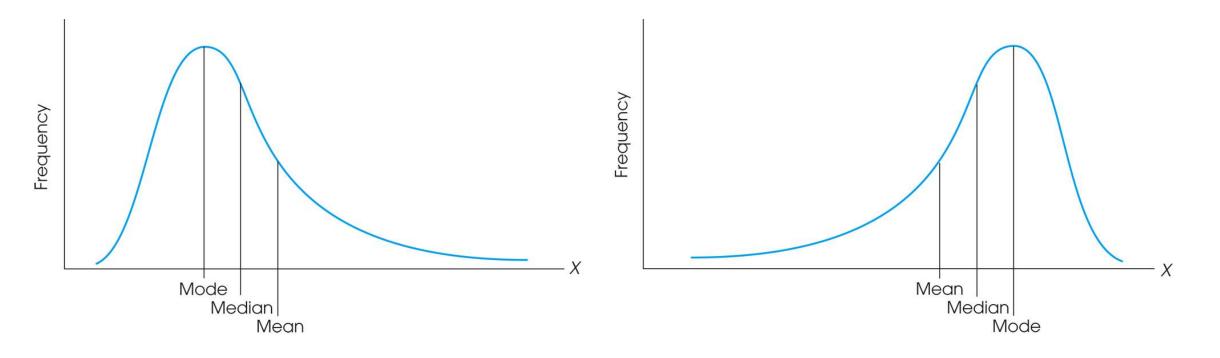
- Examples of continuous uniform distributions
 - Perfect random number generators



Bimodal distributions

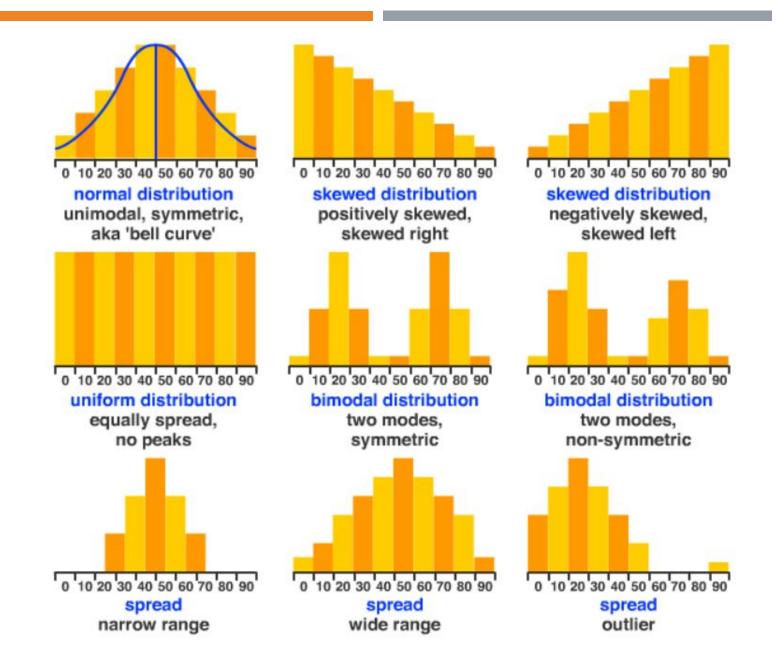

Bimodal (two peaks) or multi-modal

- Two most frequently occurring values
- May indicate relevant subgroups



Central tendency in skewed distributions

- Mean, influenced by extreme scores, is found far toward the long tail (positive or negative)
- Median is found toward the long tail, but not as far as the mean
- Mode is found near the short tail
 - Positively skewed
 - If Mean Median > 0
 - Extreme observations in right tail
 - Negatively skewed
 - If Mean Median < 0
 - Extreme observations in left tail


Skewed distributions

Positive skew / right-tailed

Negative skew / left-tailed

Summary of distributions

Learning objectives

By the end of this lecture, you should be able to:

- Identify methods of graphing qualitative and quantitative data
- Describe shapes of data

