Applying the order of operations for algebra and statistics

Review - Order of operations

P (0) Parentheses
E X^{2} Exponents
M \times Multiplication
D ㄴ․ Division
A + Addition
S - Subtraction

What mathematical operations are required in statistics?

- Addition
- Subtraction
- Division
- Multiplication

DOING THESE IN ORDER IS IMPORTANT!

- Radicals (i.e., square roots)
- Exponents
- Summations (Σ)
- Factorials (!)

Order of operations is a useful tool

- Knowing how to complete operations in order will help you accurately compute summations and factorials
- These operations are necessary in statistics

Stop point

Summation symbol $-\sum_{i=1}^{n} x_{i} \quad$ Typical element

Summations

What are summations?

- This is the upper case Greek letter sigma: Σ
- A sigma tells us that we need to sum (i.e., add) a series of numbers

Summations

- For example, four children are comparing how many pieces of candy they have

ID	Child	Pieces of Candy
1	Marty	9
2	Harold	8
3	Eugenia	10
4	Kevi	8

We could say that:

$$
\begin{aligned}
& x_{1}=9 \\
& x_{2}=8 \\
& x_{3}=10 \\
& x_{4}=8
\end{aligned}
$$

Basic summation

- If we wanted to know how many total pieces of candy the group of children had, we could add the four numbers
- The notation for this is: $\sum x_{i}$
- So, for this example, $\Sigma x_{i}=9+8+10+8=35$
- Combined, the children have 35 pieces of candy

Sums of squares

- In statistics, some equations include the sum of all of the squared values (i.e., square each item, then add)
- The notation is: $\quad \Sigma x_{i}^{2}$ or $\quad \Sigma\left(x_{i}^{2}\right)$
- In our example, $\Sigma x_{i}^{2}=9^{2}+8^{2}+10^{2}+8^{2}$

$$
\begin{aligned}
& =81+64+100+64 \\
& =309
\end{aligned}
$$

Squares for previously summed numbers

- Sometimes we want to square a series of numbers that have already been added
- The notation for this is: $\quad\left(\Sigma x_{i}\right)^{2}$
- In our example, $\left(\Sigma x_{i}\right)^{2}=(9+8+10+8)^{2}=35^{2}=1225$
- Note that Σx_{i}^{2} and $\left(\Sigma x_{i}\right)^{2}$ are different

Video - Summations as used in introductory statistics

Summation - Example I

Solve the following problem, with x values of 5,6,4,3, and 5 .

Solve:
$\sum x_{i}$

Summation - Example I Answer

Solve the following problem, with x values of $5,6,4,3$, and 5 .

Answer:

$$
\begin{aligned}
\Sigma x_{i} & =5+6+4+3+5 \\
& =23
\end{aligned}
$$

Summation - Example 2

Solve the following problem, with x values of $5,6,4,3$, and 5 .

Solve:
$\sum_{i} x_{i}^{2}$

Summation - Example 2 Answer

Solve the following problem, with x values of $5,6,4,3$, and 5 .

Answer:

$$
\begin{aligned}
& \sum x_{i}^{2} \\
& \Sigma x_{i}^{2}=5^{2}+6^{2}+4^{2}+3^{2}+5^{2} \\
&=25+36+16+9+25 \\
&=111
\end{aligned}
$$

Summation - Example 3

Solve the following problem, with x values of $5,6,4,3$, and 5 .

Solve:
$\left(\Sigma x_{i}\right)^{2}$

Summation - Example 3 Answer

Solve the following problem, with x values of $5,6,4,3$, and 5.

Answer:

$$
\begin{aligned}
\left(\Sigma x_{i}\right)^{2} & =(5+6+4+3+5)^{2} \\
& =23^{2} \\
& =529
\end{aligned}
$$

$$
\begin{aligned}
& n!=n \times(n-1) \times(n-2) \times \ldots \times 1 \\
& 1!=1 \\
& 2!=2 \times 1=2 \\
& 3!=3 \times 2 \times 1=6 \\
& 4!=4 \times 3 \times 2 \times 1=24 \\
& 5!=5 \times 4 \times 3 \times 2 \times 1=120
\end{aligned}
$$

Factorials

Factorials

- Factorials are symbolized by exclamation points (!)
- A factorial is a mathematical operation in which you multiply the given number by all of the positive whole numbers less than it
- In other words: $n!=n \times(n-1) \times 2 \ldots \times 1$

Note that $0!=1$

Factorials

For example:

- "Four factorial" $=4!=4 \times 3 \times 2 \times 1=24$
- "Six factorial" $=6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$

Factorials

- When we discuss probability distributions in statistics, we will see a formula that involves dividing factorials
- For example: $\frac{3!}{2!}=\frac{3 \times 2 \times 1}{2 \times 1}=3$
- Or: $\quad \frac{6!}{2!(6-2)!}=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1)(4 \times 3 \times 2 \times 1)}=\frac{6 \times 5}{2}=\frac{30}{2}=15$

Video - Use of factorials in statistics

Factorials - Examples

Solve the following factorials.

Factorials - Example I

Solve:

$7!$

Factorials - Example I Answer

Answer:

$$
7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5,040
$$

Factorials - Example 2

Solve:

$\frac{4!}{2!}$

Factorials - Example 2 Answer

Answer:

$$
\frac{4!}{2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1}=12
$$

Learning objectives

By the end of this review, you should be able to:

- Calculate summations
- Compute factorials

