Applying the order of operations for algebra and statistics

Review - Order of operations

What mathematical operations are required in statistics?

- Addition
- Subtraction
- Division
- Multiplication
- Radicals (i.e., square roots)
- Exponents
- Summations (Σ)
- Factorials (!)

DOING THESE IN ORDER IS IMPORTANT!

Order of operations is a useful tool

- Knowing how to complete operations in order will help you accurately compute summations and factorials
- These operations are necessary in statistics

Summations

What are summations?

This is the upper case Greek letter sigma: Σ

A sigma tells us that we need to sum (i.e., add) a series of numbers

Summations

For example, four children are comparing how many pieces of candy they have

ID	Child	Pieces of Candy	We could say that:
1	Marty	9	$x_1 = 9$
2	Harold	8	$x_2 = 8$ $x_2 = 10$
3	Eugenia	10	$x_3 = 10$ $x_4 = 8$
4	Kevi	8	

Basic summation

- If we wanted to know how many total pieces of candy the group of children had, we could add the four numbers
- The notation for this is: $\sum x_i$

- So, for this example, $\Sigma x_i = 9 + 8 + 10 + 8 = 35$
- Combined, the children have 35 pieces of candy

Sums of squares

In statistics, some equations include the sum of all of the squared values (i.e., square each item, then add)

Squares for previously summed numbers

- Sometimes we want to square a series of numbers that have already been added
- The notation for this is: $(\Sigma x_i)^2$

- In our example, $(\Sigma x_i)^2 = (9 + 8 + 10 + 8)^2 = 35^2 = 1225$
- Note that $\sum x_i^2$ and $(\sum x_i)^2$ are different

Video - Summations as used in introductory statistics

Summation – Example I

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Solve:

 $\sum x_i$

Summation – Example I Answer

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Answer: $\Sigma x_i = 5 + 6 + 4 + 3 + 5$ = 23

Summation – Example 2

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Solve: Σx_i^2

Summation – Example 2 Answer

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Answer:

$$\Sigma x_i^2$$

$$\Sigma x_i^2 = 5^2 + 6^2 + 4^2 + 3^2 + 5^2$$

$$= 25 + 36 + 16 + 9 + 25$$

$$= 111$$

Summation – Example 3

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Solve:

$$(\Sigma x_i)^2$$

Summation – Example 3 Answer

Solve the following problem, with x values of 5, 6, 4, 3, and 5.

Answer: $(\Sigma x_i)^2 = (5 + 6 + 4 + 3 + 5)^2$ $= 23^2$ = 529

$$n! = n imes (n-1) imes (n-2) imes ... imes$$

 $1! = 1$
 $2! = 2 imes 1 = 2$
 $3! = 3 imes 2 imes 1 = 6$
 $4! = 4 imes 3 imes 2 imes 1 = 24$
 $5! = 5 imes 4 imes 3 imes 2 imes 1 = 120$

1

Factorials

Factorials

- Factorials are symbolized by exclamation points (!)
- A factorial is a mathematical operation in which you multiply the given number by all of the positive whole numbers less than it
- In other words: $n! = n \times (n-1) \times 2 \dots \times 1$

Note that 0! = 1

Factorials

For example:

• "Four factorial" = $4! = 4 \times 3 \times 2 \times 1 = 24$

• "Six factorial" = $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

Factorials

When we discuss probability distributions in statistics, we will see a formula that involves dividing factorials

For example:
$$\frac{3!}{2!} = \frac{3 \times 2 \times 1}{2 \times 1} = 3$$

Or: $\frac{6!}{2!(6-2)!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1)(4 \times 3 \times 2 \times 1)} = \frac{6 \times 5}{2} = \frac{30}{2} = 15$

 ~ 1

Video – Use of factorials in statistics

Factorials – Examples

Solve the following factorials.

Factorials – Example I

Solve:

7!

Factorials – Example I Answer

Answer:

$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5,040$

Factorials – Example 2

Solve:

4! 2!

Factorials – Example 2 Answer

Answer:

$$\frac{4!}{2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = 12$$

Learning objectives

By the end of this review, you should be able to:

- Calculate summations
- Compute factorials

